Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Sunghee Yun

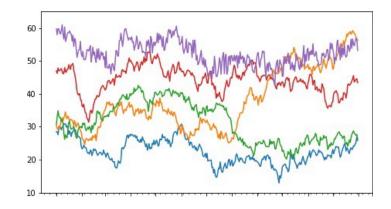
Chief Applied Scientist Gauss Labs Inc.

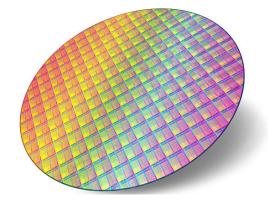
Today

- Why time-series machine learning in manufacturing AI?
- Machine learning (ML) algorithms for time-series data
 - supervised learning for time-series
 - time-series anomaly detection
 - uncertainty prediction of predictions
- Time-series learning applications in manufacturing
 - virtual metrology
 - root cause analysis by anomaly detection
- Conclusion

Why time-series learning?

- (almost) all the data coming from manufacturing environment are time-series data
 - sensor data, sound data, process times, material measurement, images, yield, etc.
- sheer amount of time-series data is huge
 - tera-scale data per day in semiconductor manufacturing lines

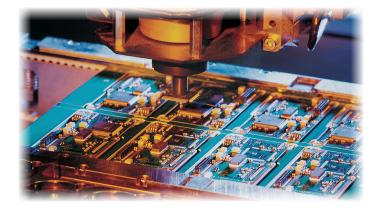


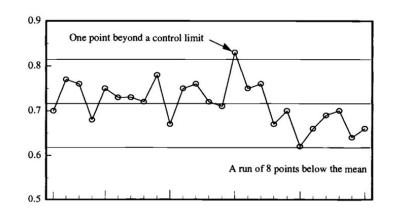


Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Why time-series learning?

- manufacturing application is about one of the following:
 - prediction of time-series values virtual metrology, yield prediction
 - anomaly detection on time-series data root cause analysis, yield analysis
 - classification of time-series values equipment anomaly alarms
 - process control with feedback advanced process control
 - process time estimation or prediction scheduling, dispatching





Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Sunghee Yun

June 13, 2022

Machine Learning (ML) techniques for time-series data

Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Time-series data

• definition of times-series:

$$x: T \rightarrow \mathbf{R}^n$$
 where $T = \{\ldots, t_{-2}, t_{-1}, t_0, t_1, t_2, \ldots\} \subseteq \mathbf{R}$

• example: material measurements: when n = 3

$$x(t) = \begin{bmatrix} \text{thickness}(t) \\ \text{some_index}(t) \\ \text{feature_size}(t) \end{bmatrix}$$

• for supervised learning, we define two time series

$$x: T \to \mathbf{R}^n$$
 and $y: T \to \mathbf{R}^m$

Time index

- time index does not have to be *time* index
- more general defintion

$$x: T \to \mathbf{R}^n$$
 where $T = \{\ldots, s_{-2}, s_{-1}, s_0, s_1, s_2, \ldots\}$

where $\cdots < s_{-1} < s_0 < s_1 < \cdots$ defines an ordering (e.g., total order)

- for example, x(s) and y(s) can represent the features and target values for a processed material, s, where they are not measured at the same time
- throughout this talk, though, we will use time-index

Supervised learning for time-series

• canonical problem:

predict $y(t_k)$ given $x(t_k), x(t_{k-1}), \ldots$ and $y(t_{k-1}), y(t_{k-2}), \ldots$

- lots of methods exist depending on assumptions of the data
 - for example, if we assume joint probability distribution of the data, we can have optimal solutions in certain criteria
- however, in this talk, we will not make such assumptions

Problem formulation

• canonical problem defition:

minimize
$$\sum_{k=0}^{K} l(y(t_k), \hat{y}(t_k))$$

subject to $\hat{y}(t_k) = g(x(t_k), x(t_{k-1}), \dots, y(t_{k-1}), y(t_{k-2}), \dots)$

where $l : \mathbf{R}^m \times \mathbf{R}^m \to \mathbf{R}_+$ is loss function and $g : \mathcal{D} \to \mathbf{R}^m$ where $\mathcal{D} = \mathbf{R}^n \times \mathbf{R}^n \times \cdots \mathbf{R}^m \times \mathbf{R}^m \times \cdots$

• we will use shortened notation for the predictor: $g:\cdot \to \mathbf{R}^m$

Machine learning (ML) solution candidates

- ignore temporal dependency and try to predict $y(t_k)$ from $x(t_k)$
 - supervised learing such as random forest, partial least squares, DL, etc.

- use sequential learning methods
 - recurrent neural network (RNN), LSTM, etc.
 - Transformer-like approach using attention mechanism

Difficulties with manufacturing applications

- for many manufacturing applications
 - concept drifts exist:
 - * $p(x(t_k), x(t_{k-1}), \ldots)$ changes over time
 - $* p(y(t_k)|x(t_k), x(t_{k-1}), \ldots, y(t_{k-1}), y(t_{k-2}), \ldots)$ changes over time
 - hence, traditional off-line training *doesn't* work!
 - DL-type algorithms do not work, either, because
 - * data got stale very quickly
 - * hence, data hungry DP do not work

- assume p experts: $f_{i,k}: \cdot \to \mathbf{R}^m$ $(i = 1, 2, \dots, p)$ for each time step, t_k
 - $f_{i,k}$ can be classical statistical learning, deep neural net, etc.
- model predictor at time step k, $g_k : \cdot \to \mathbf{R}^m$ as weighted sum of experts:

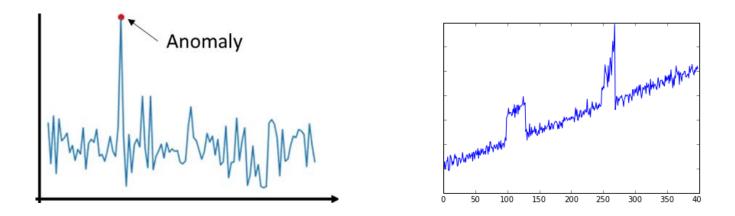
$$g_k = w_{1,k}f_{1,k} + w_{2,k}f_{2,k} + \dots + w_{p,k}f_{p,k} = \sum_{i=1}^p w_{i,k}f_{i,k}$$

- algorithm:
 - predict $y(t_k)$, i.e., $\hat{y}(t_k) = g_k(\cdots)$ given current and past x's and past y's
 - observe $y(t_k)$
 - update weights $w_{1,k+1}, w_{2,k+1}, \ldots, w_{p,k+1}$ based on $\hat{y}(t_k) y(t_k)$
 - repeat these steps

Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Time-series anomaly detection

- three types of anomaly detection: given time-series $x: T \to \mathbf{R}^n$
 - point anomaly: find k such that $x(t_k)$ is considerably different from most of the other data
 - segment anomaly: find k_1 and k_2 such that time-series segment $x(t_k)|_{k=k_1}^{k_2}$ is considerably different from most of the other data
 - sequence anomaly: given $x_1, \ldots, x_n : T \to \mathbf{R}$, find x_i such that it is considerably different from the other time-series, *i.e.*, x_j $(j \neq i)$



Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Time-series segment anomaly detection

- one method investigated using classification: given $x(t_j)|_{j=k}^{k-l+1}$, (segment of length l)
 - training:
 - \ast choose one classifier, c, and p feature extractors (or transformers): f_i
 - * extract p features by applying extractors: $y_{i,k} = f_i\left(x(t_j)|_{j=k-l+1}^k
 ight)$
 - st train the classifier, c, with training data: $(y_{1,k},1)$, $(y_{2,k},2)$, \ldots , $(y_{p,k},p)$,
 - inferencing:
 - * given new segment $x(t_j)|_{j=k-l+1}^k$, apply c to the extracted features.
 - * if they are substantically different from $(1,2,\ldots,p)$, declare it's anomaly
 - * here "difference" quantified by some anomaly score, e.g., KL divergence or entropy
 - c can be any classifier, e.g., LSTM, etc.

Prediction of uncertainty of prediction

- every point prediction is wrong!
 - $\operatorname{Prob}(\hat{Y}_k = Y_k) = 0$

no matter how good error measures are

- more importantly, want to know how reliable our prediction is
- we call this "model uncertainty estimation (MUE)"

Model uncertainty estimation (MUE)

• multiple ways to measure this:

(1) probability of true value falling into an interval: for fixed a > 0

$$\operatorname{Prob}(|Y_k - \hat{Y}_k| < a) = \operatorname{Prob}(Y_k \in (\hat{Y}_k - a, \hat{Y}_k + a))$$

(2) predictive distribution size: find a > 0 such that

$$Prob(|Y_k - \hat{Y}_k| < a) = 95\%$$

- (3) distribution of Y_k : find PDF of Y_k
- solving (3) readily solves (1) and (2)

MUE for expert-based online learning

• reminder: online learning method based on expert advice is given by

$$g_k = w_{1,k}f_{1,k} + w_{2,k}f_{2,k} + \dots + w_{p,k}f_{p,k} = \sum_{i=1}^p w_{i,k}f_{i,k}$$

- uncertainty for $f_{i,k}$ modeled by distribution parameterized by $\theta_{i,k}$, *i.e.*, $p(\gamma; \theta_{i,k})$; γ is random variable
- we first evaluate the predictive distribution

$$p_{i,k}(y(t_k);x(t_k)) = \int p(y;x(t_k),\gamma)p(\gamma; heta_{i,k})d\gamma$$

• problem to solve: evaluate distribution of g_k given those of $f_{i,k}$

• independent case: if $p_{1,k}, \ldots, p_{p,k}$ are (statistically) independent, then PDF of $g_k(x(t_k))$ can be calculated by

$$rac{p_{1,k}(y/w_{1,k};x(t_k))}{w_{1,k}} \star \dots \star rac{p_{p,k}(y/w_{p,k};x(t_k))}{w_{p,k}}$$

• Gaussian case: $p_{1,k}, \ldots, p_{p,k}$ are Gaussians with correlation coefficient matrixa R, *i.e.*,

$$R = \begin{bmatrix} p_{i,k} \sim \mathcal{N}(\mu_{i,k}(x(t_k)), \sigma_{i,k}(x(t_k)))^2) \\ \rho_{1,2} & \rho_{1,3} & \cdots & \rho_{1,p} \\ \rho_{1,3} & \rho_{2,3} & 1 & \cdots & \rho_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{1,p} & \rho_{2,p} & \rho_{3,p} & \cdots & 1 \end{bmatrix} \in \mathbf{R}^{p \times p}$$

Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

17

Sunghee Yun

- then
$$g_k$$
 is also Gaussian

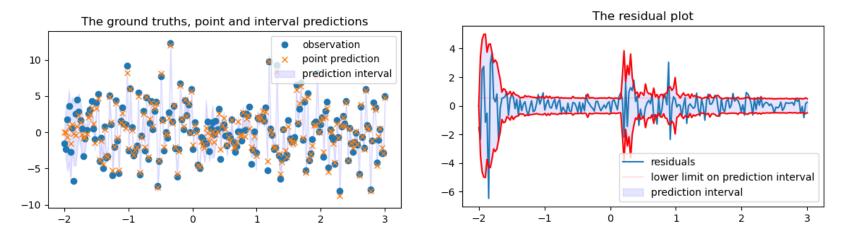
$$\mathcal{N}(w_k^T \mu_k(x(t_k)), w_k^T \operatorname{diag}(\sigma_k(x(t_k))) R \operatorname{diag}(\sigma_k(x(t_k))) w_k))$$

where

$$w_{k} = \begin{bmatrix} w_{1,k} & \cdots & w_{p,k} \end{bmatrix}^{T} \in \mathbf{R}^{p}$$

$$\mu_{k}(x(t_{k})) = \begin{bmatrix} \mu_{1,k}(x(t_{k})) & \cdots & \mu_{p,k}(x(t_{k})) \end{bmatrix}^{T} \in \mathbf{R}^{p}$$

$$\sigma_{k}(x(t_{k})) = \begin{bmatrix} \sigma_{1,k}(x(t_{k})) & \cdots & \sigma_{p,k}(x(t_{k})) \end{bmatrix}^{T} \in \mathbf{R}^{p}$$



Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Sunghee Yun

June 13, 2022

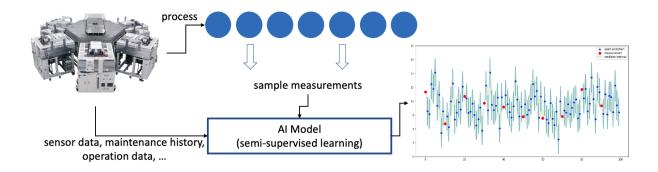
Time-series Learning Applications in Manufacturing

Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Virtual metrology (VM)

- in many cases, we cannot measure all processed materials for fundamental reasons
 - measurement equipment is too expensive
 - no room in the factory for many measurement equipment
 - measuring every materials hinders production speed inducing low throughput
- thus, we do sampling (with very low smapling rate)
 - in semiconductor manufacturing line, avarage sampling rate is less than 1%
- problem: we want to predict the measurement of unmeasured material using indirect signals such as
 - sensor data, maintenance history, operation data, . . .

- difficulties
 - concept drift/shift due to maintenance
 - data becomes stale quickly
- online learning method based on expert advice is used for the solution
- MUE provides the uncertainty level of our prediction
 - process engineers can judge when they can trust the predictions
 - we can monitor performance degradation



Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Applications of VM

- why do we even develop VM?
- focus on the values we deliver to out customers; want VM to be used for
 - process control, *e.g.*, feedback control
 - detecting equipment out-of-control status
 - detecting root caues for yield drop
 - predicting (future) yield

Different error measures depending on VM applications

• mean-square-error (MSE) for run-to-run control (where \mathcal{K} is test index set)

$$\mathbf{E} \left\| Y - \hat{Y} \right\|^2 \simeq \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \left\| y(t_k) - \hat{y}(t_k) \right\|^2$$

• mean-p-norm-error (MPE) for anomaly detection (with p > 2)

$$\mathbf{E} \left\| Y - \hat{Y}
ight\|_p^p \simeq rac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \left\| y(t_k) - \hat{y}(t_k)
ight\|_p^p$$

• R-squared (R^2)

$$1 - \frac{\mathbf{E} \|Y - \hat{Y}\|^2}{\mathbf{E} \|Y - \mathbf{E} Y\|^2} \simeq 1 - \frac{\sum_{k \in \mathcal{K}} \|y(t_k) - \hat{y}(t_k)\|^2}{\sum_{k \in \mathcal{K}} \|y(t_k) - \bar{y}\|^2}$$

Sogang Univ. BK4 Seminar: Time-series learning for Manufacturing AI

Root cause analysis by anomaly detection

- background: statistical process control (SPC)
 - conventional old method used in manufacturing (since 1950's)
 - monitor measurement and alert when things go wrong
 - things go wrong defined by rules; examples:
 - * measument out of $(\mu 3\sigma, \mu + 3\sigma)$,
 - * three consecutive measurements out of $(\mu-2\sigma,\mu+2\sigma)$
- our problem: when SPC alarm goes off, find the responsible (chamber in) equipment

Root cause analysis by anomaly detection

- two methods exist: (1) segment anomaly detection and (2) sequence anomaly detection
- two types of data exist: (1) sensor data and (2) processed material measurement data
- problems: given time-series data $x_e(t_0), x_e(t_1), \ldots$ for each entity $e \in E$ (entity refers to equipment, chamber, station, *etc.*)
 - find entity e that shows abnormal behavior using segment anomaly detection
 - find entiry e that is different from other entities using sequence anomaly detection

Conclusion

- time-series learning and anomaly detection occur at various places in manufacturing AI applications
- concept drift and data noise make them very challenging, but have working solutions
- solutions: time-series supervised learning, time-series anomaly detection, model uncertainty estimation
- lots of applications exist
 - virtual metrology, root cause analysis, yield prediction, failure pattern analysis, predictive maintenance, etc.